ORAL RABIES VACCINATION IN DOGS

Andre Regnault, DVM
Oral rabies vaccine Dpt
VIRBAC

Tehran, Oct 15th, 2014
PREAMBULE

- Worldwide, dogs are the major reservoir for rabies

- Killing of stray dogs for rabies control is not a solution
 - Wherever it has been done, it has never been a success
 - Other animal species would “take their seat” (e.g. foxes)
 - Overall, it is not considered as ethical

- Stray dogs (dogs which cannot be caught, without owner) are not easily accessible for parenteral vaccination.
 - Hence the possible interest for Oral Vaccination of Dogs (OVD)

- 2 vaccines are recommended by WHO for oral vaccination of dogs
 - SAG2 and V-RG
SAG2 AS CANDIDATE FOR ORAL VACCINATION OF DOGS

- SAG2 strain is safe:
 - It has been widely used in Europe, for rabies elimination in wildlife (foxes and raccoon dogs) in a number of countries.
 - No vaccine-induced rabies case has been reported in Europe with SAG2

- SAG2 safety has been validated onto in 43 animal species (target and non-target): rodents, carnivores, primates, cattle, birds

<table>
<thead>
<tr>
<th>Common vole</th>
<th>Merion</th>
<th>Domestic ferret</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Microtus arvalis)</td>
<td>(Meriones)</td>
<td>(Mustela putorius fur)</td>
</tr>
<tr>
<td>Bank vole</td>
<td>Greater Egyptian Jerboa</td>
<td>Honey badger</td>
</tr>
<tr>
<td>(Myodes glareolus)</td>
<td>(Jaculus orientalis)</td>
<td>(Melioua capensis)</td>
</tr>
<tr>
<td>European water vole</td>
<td>Red fox</td>
<td>European badger</td>
</tr>
<tr>
<td>(Arvicola amphibius)</td>
<td>(Vulpes vulpes)</td>
<td>(Meles meles)</td>
</tr>
<tr>
<td>Tundra vole</td>
<td>Black-backed Jackal</td>
<td>African civet</td>
</tr>
<tr>
<td>(Microtus oeconomus)</td>
<td>(Canis mesomelas)</td>
<td>(Civetis civetta)</td>
</tr>
<tr>
<td>Northern red-backed vole</td>
<td>Side-striped Jackal</td>
<td>Large-spotted genet</td>
</tr>
<tr>
<td>(Myodes rutilus)</td>
<td>(Canis adustus)</td>
<td>(Genetta tigrina)</td>
</tr>
<tr>
<td>Arctic ground squirrel</td>
<td>Golden Jackal</td>
<td>Slender mongoose</td>
</tr>
<tr>
<td>(Spermophilus parryii)</td>
<td>(Canis aureus)</td>
<td>(Galeraella sanguinea)</td>
</tr>
<tr>
<td>Field mouse</td>
<td>Western coyote</td>
<td>Raccoon</td>
</tr>
<tr>
<td>(Apodemus flavicollis/syladicus)</td>
<td>(Canis latrans)</td>
<td>(Procyon lator)</td>
</tr>
<tr>
<td>Norway rat</td>
<td>Domestic dog</td>
<td>Striped skunk</td>
</tr>
<tr>
<td>(Rattus norvegicus)</td>
<td>Meriones</td>
<td>(Mephitis mephitis)</td>
</tr>
<tr>
<td>Multi-mammate mouse</td>
<td>Wild dog</td>
<td>Chimpanzee</td>
</tr>
<tr>
<td>(Mastomys natalensis)</td>
<td>Lycaon pictus</td>
<td>(Papio ursinus)</td>
</tr>
<tr>
<td>Bushfelt gerbil</td>
<td>Raccoon dog</td>
<td>Western European hedgehog</td>
</tr>
<tr>
<td>(Gerbilliscus leucogaster)</td>
<td>(Nyctereutes procyonoides)</td>
<td>(Erinaceus europeus)</td>
</tr>
<tr>
<td>North African gerbil</td>
<td>Domestic cat</td>
<td>Wild boar</td>
</tr>
<tr>
<td>(Gerbillius campestris)</td>
<td>(Felis catus)</td>
<td>(Sus scrofa)</td>
</tr>
<tr>
<td></td>
<td>Domestic cat</td>
<td>Domestic goat</td>
</tr>
<tr>
<td></td>
<td>(Felis catus)</td>
<td>(Capra hircus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Bos primigenius)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carrion crow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Corvus corone)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pied crow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Corvus albus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rook</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Corvus frugilegus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Buzzard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Buteo buteo)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Red kite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Milvus milvus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tawny owl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Strix aluco)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Long-eared owl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Asio otus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barn owl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Tyto alba)</td>
</tr>
</tbody>
</table>

Virbac
SAG2 & Oral vaccination of dogs - INDIA

- Safety and efficacy trials made in India (Bhopal, 2004)

 - **Safety**
 - No salivary excretion of infective viral particle.
 - No adverse clinical sign up to 219 days post-baiting
 - No replication of the bait virus in brain / salivary glands

 - **Efficacy**
 - 100% of the vaccinated dogs resisted to viral challenge.
 - 100% of the unvaccinated dogs died.

- SAG2 is now registered in India
 - the only oral rabies vaccine for dogs registered in the world
SAG2 and oral vaccination of dogs – other countries

- Feasability trials have been carried out in several countries:
 - India,
 - Tunisia,
 - Mexico,
 - South Africa,
 - Indonesia,
 - Morocco

All trials were pilot. No large scale trial has ever been made

- Some infos on the SAG2 bait development
SAG2 - Bait for dogs

- Blister containing the vaccine
 - Identical to the wildlife bait blister \(10^{7.8}\) CCID50 / bait

- Shape and size: suitable for dogs
 - Round, 44mm diam.
 - Thin, so the blister is easily pierced, and vaccine in contact with oral mucosa and tonsils.
 - Adherent to the blister
 - Cement colour, not to attract attention to humans

- Bait casing is palatable to stray dogs
 - Chicken liver flavour
MOROCCO TRIAL (2014)

- **Preamble**
 - Canine rabies is important in Morocco
 - 20 human deaths reported annually

- **Protocolle**
 - Use of SAG2 bait, palatable for dogs (chicken liver taste)

- Distribution models:
 - Door to door distribution model (on 60 owned dogs)
 - Hand out (on 15 stray dogs)
 - Wildlife immunization model (30 baits - 4 lines, near slaughterhouse & market).
MOROCCO TRIAL : RESULTS

- **DDDM (door to door distribution model)**
 - 100% of dogs are attracted to the bait
 - 77% of dogs eat the bait. 80% of blisters were pierced.
 - So 67% of dogs were in contact with the vaccine.

- **Hand out**
 - 100% of dogs are attracted
 - 46% of dogs took the bait (some eat / some bury it).
 - Others are scared

- **WIM (wildlife immunization model)**
 - 73% of baits have disappeared
 - 68% of found capsules were pierced

- Conclusions
Oral vaccination of dogs - limitations

- People may be scared with dogs
 - Either for parenteral, or for oral vaccination, we need people comfortable with handling dogs

- Goal is to reach 70% vaccination of the given population
 - We do not reach this figure with OVD
 - All dogs are attracted, but some are scared and will not take the bait. Or will take it, but not eat it.
 - WIM: which % of animals ate the bait?

- Logistics:
 - Bait storage -20° C (from storage rooms, transportation, down to villages).
 - Baits have to be defrozen before vaccination

- Organization
 - Involvement of the community
 - Baits remains – to be destroyed
 - Hours of the day
OVD – Pre-requisites

- Parenteral vaccination needs to be maximized beforehand
 - Pet (owned animals)
 - Accessible dogs

- Special teams to be trained on how to approach dogs

- Data to be available
 - dog population (sensus),
 - Incidence on rabies in dogs
 - human population,
 - Yearly number of bites
• Rabigen SAG2 is an adequate candidate for oral vaccination.
 ▪ It is safe
 ▪ It is efficient
 ▪ It is palatable

• Oral vaccination is a tool for rabies control in stray dogs, but cannot be the tool.
 ▪ It can come in addition to parenteral vaccination, but cannot substitute to it.
 ▪ It cannot be implemented before parenteral vaccination has been optimized.

• Further trials needs to be done. And strategies need to be suited to each specific situation.
RABIGEN SAG2 - features and benefits

Thank you!